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Abstract: Mississippi Valley-type (MVT) Pb-Zn deposits are a subtype of sedimentary-hosted min-
eralization. These deposits are hosted by carbonate sequences in passive-margin tectonic settings.
This paper uses the Fry technique and distance distribution analysis to model the spatial distribution
pattern of MVT Pb-Zn deposits in the west of Semnan province (Iran) and their association with
some geological features, aiming at mapping mineral prospectivity in the area. The modeling results
reveal that NE–SW trending faults and Permian-Cretaceous dolomites and limestone are, respectively,
major structural and lithological controlling factors of mineralization that operate as conduits and
physicochemical subsystems of ore formation. The integration of the corresponding evidence maps of
the controlling factors with a model of the geochemical signature of MVT Pb-Zn deposits through a
supervised random forest approach, a machine learning technique, gains an exceptional prospectivity
map predicting 100% of the known MVT Pb-Zn deposits in only 15% of the study area, which is an
achievement. The recognized targets can be planned for further exploration.

Keywords: fry analysis; spatial pattern; Mississippi Valley-type (MVT) mineralization; structural-
lithological control; geochemical signatures; random forest

1. Introduction

Mississippi Valley-type Pb-Zn (MVT Pb-Zn) deposits are a subtype of sedimentary-
hosted Pb-Zn deposits that occur in platform carbonate sequences, typically in passive-
margin tectonic settings [1–7]. As [8] states, the dominant mineralogy of these deposits
includes sphalerite, galena, pyrite, marcasite, dolomite, and calcite. MVT deposits primarily
occur in platform carbonate sequences within the foreland of orogenic belts. While most
MVT deposits fit this pattern, some anomalous examples are found along the margins of
active extensional basins (such as the Lennard Shelf in Australia) [9–11]. [12] discussed
the geological context in which MVT Pb-Zn deposits are typically found, particularly
in orogenic foreland areas. They highlighted the significant role of tectonic settings in
the formation and localization of these mineral deposits and explained the process of
mineralization, including how lead and zinc become concentrated in these specific settings.
Unlike SEDEX and Irish-type deposits, MVT deposits do not require a direct link between
the tectonic environment where the host rock formed and the subsequent mineralization.
These deposits are associated with broad paleotopographic highs and domal structures at
the basin scale, likely influenced by the overall compressional conditions and basement
highs that facilitate fluid flow [7,8]. MVT deposits are lenticular and irregular in shape
and occur in clusters. Their ore-forming fluid consists of intra-basin brines (not related to
magmatic and metamorphic water) with an approximate salinity of 10 to 30%, equivalent to
the weight of table salt. The Earth’s crust is the source of metals and sulfur in MVT deposits.
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The final temperature of sulfides in these deposits ranges from 75 to 200 degrees Celsius.
The controlling factors for their formation are faults and fractures, dissolution seams, and
transitional boundaries (often between carbonate units and shale layers). Sulfide minerals
exhibit a range from coarse to fine-grained and disseminated to massive [10,13]. Temporal
association with tectonic activity influences fluid flow and hydrothermal processes [8,13,14].

At a district scale of MVT Pb-Zn mineral systems, the critical processes include
sediment basin development, fluid flow, source of metals, active pathways, and chemi-
cal/physical traps. The main factor that starts the desired mineralization process is the
tectonic forces and also lithological pressure of the sedimentary layers caused by the
foreland basin formation [4,6–8,15]. The pressure induces the water flow within the sedi-
mentary basin (basinal brines). This water is heated at the bottom of the sedimentary basin
due to the geothermal gradient. The heated water then moves within the surrounding rocks.
Some of these adjacent rocks serve as good sources of metals, including shales, siltstones,
and sandstones [8]. Some studies show that black shale, which contains extractable metals,
is one of the potential sources of Pb and Zn in Pb-Zn MVT deposits [4,7,16–19]; thus, the
heated fluid leaches the metals from the surrounding rocks and carries them away.

Faults and fractures serve as pathways for fluids within the Earth’s crust, allowing the
percolation of the saline fluids with the host rocks and also increasing the area of interac-
tion. Movement along these structures allows the creation of spaces where mineralization
occurs. These faults play a key role in transferring ore-bearing fluids from deeper layers
to the surface. Within carbonate host rocks, fluid circulation occurs through permeable
corridors, enhancing the conduit for ore-forming processes [20–22]. MVT Pb-Zn deposits
are particularly prevalent in the Phanerozoic, constituting the second-largest category
of lead-zinc deposits, accounting for approximately 24% of all Pb-Zn occurrences. The
peak occurrence of MVT deposits coincides with the amalgamation of the Pangaea super-
continent (Carboniferous to Permian) and the Alpine-Laramide orogeny (Cretaceous to
Tertiary) [8]. Recent decades have seen significant advances in understanding the genesis
of the MVT Pb-Zn mineralization. Extensive research has investigated the features of these
deposits [17,18,23–25]. Currently, it is widely accepted that most MVT deposits are related
to enormous fluid systems that migrated through carbonate units in foreland basins, driven
by gravity from an adjacent orogenic belt [3,26–28]. These epigenetic Pb-Zn deposits are
hosted by stratigraphic layers within carbonate rock formations, resulting from the filling
of specific horizons [1,3,4,6,8].

There are over 285 carbonate-hosted Pb-Zn (CH Pb-Zn) deposits in Iran, which fall into
two main categories: (1) Permian–Triassic-hosted deposits (mainly MVT) concentrated in
the Central Alborz metallogenic belt, the NE margin of the Sanandaj-Sirjan Zone (SSZ), and
the Tabas-Posht e Badam metallogenic belt and (2) Cretaceous-hosted deposits distributed
in the SSZ, the Yazd Block, and the Central Iranian Geological and Structural (CIGS)
transitional zone [14,15]. There is a notable association between the distribution of CH
Pb-Zn deposits and the main suture zones surrounding the Iran Plate. Most of the orogenic
MVT deposits from the Permian–Triassic period occur along these suture zones. These
zones formed due to the collision between the Iran Plate and the Eurasia Plate during
the Upper Triassic when the Paleo Tethys Ocean closed. The close spatial and temporal
relationships between these MVT deposits and the Main-Cimmerian orogenic events
indicate the development of a foreland basin during the Upper Triassic. This basin played
a role in Pb-Zn and fluorine mineralization. The modern distribution of these deposits in
Iran is attributed to the formation of this foreland basin and subsequent fragmentation of
the Central Iranian Microcontinent into blocks that rotated along right-lateral strike-slip
faults. This late process divided the Permian–Triassic MVT province into the Tabas Posht e
Badam and Central Alborz metallogenic belts [14,15]. Some studies have been conducted
about CH Pb-Zn deposits in Iran [8,13–15,29,30]. Parsa and Maghsoudi [20] considering
the necessity of recognizing the processes that have controlled the establishment of MVT
Pb-Zn mineralization in the Behabad district (Iran), clarified the structural and lithological
factors influencing their distribution.
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Considering the necessity of distinguishing the processes that controlled the organiza-
tion of MVT Pb-Zn mineralization, this study aims to clarify the structural and lithological
factors influencing the distribution of MVT Pb-Zn deposits in western Semnan in Iran,
which are not yet fully understood and can provide valuable insights for future exploration
efforts [18]. In this study, the Fry analysis technique [31] was applied to clarify spatial
distribution patterns in the MVT Pb-Zn deposit [20,32]. Additionally, we used distance
distribution analysis [33] to study the spatial relationship between geological features and
known occurrences and subsequently recognize the geological features that are significantly
associated with MVT Pb-Zn deposits [20,34]. Furthermore, we integrated sediment basin
geochemical signatures and inferred controlling factors using a data-driven random forest
(RF) algorithm to identify high-potential MVT Pb-Zn mineralization in the study area.

2. Geological Framework of the Study Area

The study area is located in the western part of Semnan province, Iran (Figure 1a).
Semnan province straddles the southern slopes of the Alborz Mountain range (central-
eastern) and borders the Great Desert to the north. It falls within two distinct structural
zones: the Alborz Zone and the Central Iran Zone (CIZ) (Figure 1a). The ‘Semnan fault’ in
the north demarcates the boundary between Alborz and CIZ, while the Attari fault, located
about 30 km east of Semnan, separates the two tectono-sedimentary zones within the CIZ
(Figure 1b). These tectonic features play a crucial role in shaping the geological landscape
of Semnan Province [35–37]. Separated by important faults from north to south, the study
area exhibits two major tectono-sedimentary units, including within the Alborz Zone with
shale, green sandstone, and tuff, as well as the CIZ characterized by continental or shallow
marine sediments, limestones, conglomerates, and sandstones (Neogene units [35–37]).
Furthermore, fluorite and galena mineralization were reported in limestone layers of
the Elika formation and in the Cretaceous limestone, southern part of Shahmirzad zone.
Figure 1a and b depict the geographical location and simplified geological map of the
selected study area, respectively.

MVT Pb-Zn Mineralization in Western Semnan

The study area, situated southeast of the central Alborz metallurgical belt in northern
Iran, exhibits significant mineralization potential for MVT zinc-lead and fluorite. The
Alborz orogen system is a part of the Alpine-Himalayan orogenic belt [13,15,38–42]. Thrust
faults play a pivotal role, displacing structural elements and leading to duplex systems.
Two distinct thrusting generations shaped the area: (1) the pre-Jurassic phase associated
with the Early Cimmerian orogeny (ductile nature) and (2) the Cenozoic phase, which is
related to the Alpine orogeny (brittle behavior) [40].

In the study area, MVT lead and zinc mineralization primarily occurs in Cretaceous
carbonate rocks (dolomite and dolomitic limestone), Lar formation limestones (Late Juras-
sic), and Elika formation dolomites (Triassic) [8,13,14,30]. Sulfide mineralization in this area
is accompanied by hydrothermal alteration, dolomitization, and less significant silicifica-
tion [29]. Hydrothermal dolomites, coarser-grained than regional diagenetic ones, surround
sulfide mineralization loads. MVT deposits tend to be more commonly hosted in dolomite
rather than limestone. These dolomite-hosting deposits are typically larger and exhibit
higher grades of Pb and Zn compared to other host rocks [43]. Galena, sphalerite, and
minor pyrite occur in various forms (streaks, veins, substitution, etc.) and are associated
with carbonate mineral phases. The Anzab and Bashm faults, trending NE–SW, are key
structures in the Cretaceous succession and seem to play a crucial role in sulfide mineraliza-
tion. These compressional faults intersect secondary mineralization-related tensional faults
and fractures with NW–SE trends. Fault activity was initiated during Upper Cretaceous
limestone and dolomite deposition in western Semnan [13].

Hydrothermal fluids exhibit a homogeneous temperature range (70–110 ◦C) and
salinity (15%–25% NaCl by weight) [13]. Oxygen isotope studies on quartz and carbon
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isotopes of dolomite reveal sedimentary fluids as ore-forming agents. Galena Pb isotopes
trace the metals back to continental crust sources [8,13].
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Based on a 1:100,000 scale geological map of Semnan and related previous studies,
characteristics of 16 MVT Pb-Zn deposits of the study area were summarized (Table 1).
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Since the Semnan fault is the boundary of the Alborz structural zone and CIZ, all of these
deposits are located in the Alborz zone.

Table 1. Summary of major characteristics of some MVT deposits in western Semnan.

No. Name X in UTM Y in UTM Metal Associations Host Rock

1 Chenaran 53◦10′15′′ 35◦40′54′′ Lead Limestone. Lar. Fm (Jurassic)
2 Darreh Ahu 53◦14′21′′ 35◦43′31′′ Lead Dolomite, limestone (Cretaceous)
3 Sarlash 53◦03′48′′ 35◦48′15′′ Lead/Zinc Limestone (Cretaceous)
4 Anabu 53◦03′55′′ 35◦48′09′′ Lead/Zinc Limestone (Cretaceous)
5 Kuh-e-Rudbar 53◦10′29′′ 35◦40′55′′ Lead/Zinc Limestone. Lar. Fm (Jurassic)

6 Abgarm 53◦11′20′′ 35◦39′45′′ Lead/Zinc Sandy limestone. Shahmirzad member
(Jurassic)

7 Shahmirzad 53◦16′29′′ 35◦43′54′′ Lead/Zinc Limestone (Cretaceous)
8 Mehdi Shahr 53◦19′00′′ 35◦45′00′′ Lead/Zinc Limestone. Lar Fm (Jurassic)
9 Kuh-e-Bashm 53◦27′00′′ 35◦49′59′′ Lead/Zinc Limestone (Cretaceous)

10 Rezabarag 53◦28′18′′ 35◦49′40′′ Lead/Zinc Limestone (Cretaceous)
11 Sangsar 53◦19′59′′ 35◦43′36′′ Lead and Zinc Limestone. Elika Fm (Triassic)
12 Laveh dar 53◦22′00′′ 35◦44′41′′ Lead and Zinc Dolomite. Elika Fm (Triassic)
13 Darband Shahmirzad 53◦15′00′′ 35◦45′00′′ Lead and Zinc Limestone, dolomite. Elika Fm (Triassic)
14 Darband 53◦21′10′′ 35◦44′54′′ Lead and Zinc Limestone (Cretaceous)
15 Rezabark 53◦27′17′′ 35◦49′40′′ Lead and Zinc Limestone (Cretaceous)
16 Shahmirzad1 53◦17′08′′ 35◦44′14′′ Lead and Zinc Limestone (Cretaceous)

3. Material and Methods
3.1. Data Source

In this study, we used a 1:100,000 scale geological map of Semnan. The geological
map was digitized, from which the recorded lithological units and faults/lineaments
were derived in the vector format (Figure 1b) and the locations of 16 known MVT Pb-Zn
occurrences in western Semnan (Figure 1b and Table 1).

The Geological Survey of Iran conducted a systematic geochemical exploration pro-
gram in the Semnan geological map area at a 1:100,000 scale. They established a regular
sampling network with 1400 m × 1400 m cell size. Stream sediment samples were collected
from first- or second-order streams within each cell. These samples were combined into
composite samples representing 2 km² and associated with each cell’s center. A total of
1111 composite stream sediment samples were collected. Major and trace element concen-
trations in these samples were analyzed using inductively coupled plasma optical emission
spectrometry (ICP-OES), except for gold (Au), which was analyzed separately using the
fire assay method (note that universities and researchers are permitted to use the GSI data).
Geochemical data investigation is crucial for identifying promising areas for mineralization
modeling [44]. Previous studies by [45–48] have successfully used geochemical data to
detect anomalies and potential mineral resource zones.

3.2. Fry Analysis

The spatial distribution of mineralization can be assessed by creating a plot where
the distances and directions between each data point are represented as points relative to
the origin [32]. The Fry analysis, introduced by Fry in 1979, is a geometric autocorrelation
technique used to examine the spatial distribution of point objects. This method was
applied to investigate the structural controls of mineral deposits across various terrains, as
demonstrated by studies conducted by [20,32,34,49]. In the Fry method, a transparent sheet
of paper with vertical and horizontal axes is employed to create a set of translated points
based on the location of each object. By moving the paper both horizontally and vertically
across a map depicting the spatial distribution of points, researchers position each point at
the central intersection point once, recording the locations of the remaining points on the
transparent paper. In DotProc software (version 1.0f), for a total of n points, the Fry analysis
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generates n2—n translated points, commonly known as ‘Fry points’. These points provide
valuable insights into the spatial distribution of point objects and mineral deposits during
regional-scale assessments, helping us investigate the influence of geological features in
the genesis of one typology of deposits. Therefore, in this study, the point vector layer
containing coordinates of the 16 MVT Pb-Zn occurrences in ArcGIS (version 10.8.1) was
exported into a format supported by DotProc. Using the Fry points output from DotProc
1.0f, we inputted the data back into ArcGIS to visualize and analyze the spatial pattern of
both the Fry points and the original data points.

3.3. Distance Distribution Analysis

The concept of distance distribution pertains to the probability distribution of the
distance from a fixed point to the k-th nearest figure within a Poisson process of identically-
shaped figures in n-dimensional space [33]. The method outlined in Berman’s paper
enables the determination of this distribution, and notably, it remains independent of
the figures’ orientation distribution. This approach has been applied in various fields,
including the study of spatial associations between point objects and geological features,
such as mineral occurrences [20,50,51]. In this approach, we compare the cumulative
relative frequency distribution of distances from a set of geological features to mineral
deposit locations (Dm) with the distribution of distances to all locations (De). The former
represents the geological conditions influencing mineral deposit emplacement, while the
latter represents a random pattern. The contrast C, which represents the difference between
the two plots at varying distances, serves as a measure of spatial association between
mineral deposits and geological features. If C∼=0, then the mineral deposit locations and
the set of geological features are spatially independent [34]. Positive and negative C values
indicate corresponding positive and negative spatial associations. The maximum value of C
(Cmax) identifies the optimal distance range where the most significant spatial association
occurs between mineral deposits and the geological features under examination. A higher
Cmax signifies a stronger spatial relationship between these features (faults, lithologies,
etc.) and mineralization.

3.4. Random Forest (RF) Algorithm-Based Modeling

To produce a prospective map of MVT Pb-Zn mineralization in western Semnan, we
used RF algorithm [52]. RF is a machine learning (ML) algorithm that creates an ensemble of
multiple decision trees to reach a singular, more accurate prediction or result. This method is
very popular for not only classification tasks but also for regression analysis [44,53–56]. The
trees are applied sequentially, starting from a root node and progressing to terminal nodes
(leaves). The goal is to make repeated predictions based on training data. RF can be used
for both classification and regression tasks. Each decision tree in the ensemble is trained on
a randomly selected subset of the data, using bootstrap aggregation (bagging). Out-of-bag
samples are used for validation. Additionally, at each node split, a random subset of
predictor variables is considered. The final prediction from the RF (in regression) is the
average of predictions from all the individual regression trees. The algorithm recursively
splits the data based on conditions until a predefined stopping criterion is met. Each
leaf node contains a simple regression model. The Gini impurity index is used to assess
the purity of child nodes relative to their parent node. Decision trees in RF can grow
to maximum purity, unlike regression trees, which can be pruned or grown to specific
conditions [52,57].

In data-driven predictive modeling of mineral prospectivity, RF utilizes multiple re-
gression trees. These trees are trained on labeled data, where the target variable takes values
of 1 for deposit locations and 0 for non-deposit locations. As a result, RF predictions yield
floating values between 0 and 1, representing the likelihood of mineral deposit occurrence.
By applying a specific threshold value, these predictions can be classified into a binary map
of prospective and non-prospective areas. In this study, we used a binary labeling approach
(0 and 1). Specifically, we considered a buffer of 2000 m around the 16 known MVT Pb-Zn
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deposits, labeling these areas as 1 (indicating mineralization). Additionally, we identified
16 locations that are not only distant from the known deposit sites but also far from their
suitable host rocks, labeling them as 0 (indicating non-mineralization).

3.4.1. Hyperparameters for RF Analysis

When working with RF for regression tasks, it is essential to understand hyperparam-
eters and evaluate the model’s performance. The key aspects to consider involve:

Number of Estimators (n_estimators): The n_estimators parameter determines the
number of decision trees in the ensemble. Increasing the number of estimators can improve
model performance up to a point. However, adding too many trees may lead to overfitting.
We should consider experimenting with different values (e.g., 100, 500, 1000) and selecting
the optimal value based on cross-validation results.

Randomness Parameters (random_state): The random_state parameter ensures repro-
ducibility by fixing the random seed used during bootstrapping and feature selection. We
should set it to a specific value (e.g., 0) for consistent results across runs.

3.4.2. Performance Metrics for Regressor RF

Mean Absolute Error (MAE): The MAE measures the average absolute difference
between predicted and actual values. Lower MAE indicates better performance.

Root Mean Squared Error (RMSE): The RMSE penalizes larger errors more heavily
than the MAE. It is the square root of the mean squared error. Smaller RMSE values are
desirable.

R-squared (R2) Score: The R2 score represents the proportion of variance explained by
the model. It ranges from 0 to 1, where 1 indicates a perfect fit. Higher R2 values indicate
better explanatory power.

4. Analysis, Results, and Interpretation

To assess the spatial distribution pattern of Pb-Zn MVT deposits in the study area, fry
analysis was applied to the locations of the 16 known deposits (Figure 2a). Furthermore, an
orientation diagram was created for all pairs of Fry points, revealing a significant northeast-
to-southwest direction (see Figure 2b). This orientation corresponds to the prevailing
northeast-to-southwest fault and carbonate unit trend observed in the study area.
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In the study area, various faults were categorized into four main orientations: N–S,
E–W, NW–SE, and NE–SW (Figure 3). The minor direction showed N30◦W, N50◦W–
N60◦W, and N80◦E. Distance maps for all four orientations were created (Figure 4). Then,
the spatial relationships between MVT Pb-Zn deposits and these structural features were as-
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sessed using the distance distribution analysis method introduced by [33] (see Figure 5a–d).
According to the producing plots and related C values for each orientation, all of the faults’
orientations are in a positive correlation with MVT Pb-Zn occurrences except for N–S
trending faults. The C_max values for the E–W and NW–SE directions are 0.43 and 0.44,
respectively. However, NE–SW striking faults show significant positive spatial associations
with the mineralization type sought in western Semnan. The C_max value of NE–SW
striking faults is 0.49 (Table 2).

MVT Pb-Zn mineralization occurs within cretaceous dolomite and limestone. For a
better understanding of the relationship between these rock units and MVT mineralization,
a distance distribution analysis was conducted. The results indicate a strong positive spatial
association (C_max value of 0.72) between cretaceous dolomite and limestone with MVT
Pb-Zn occurrences (Table 2 and Figure 6). Therefore, it can be inferred that these rock
units play a significant role as the lithological control for MVT Pb-Zn mineralization in
western Semnan.

Table 2. Maximum contrast values for different geological features in western Semnan.

Geological Features Maximum Contrast Value, Cmax

NS striking faults 0.18
EW striking faults 0.43

NW–SE striking faults 0.44
NE–SW striking faults 0.49

Permian–Cretaceous dolomites and limestone units 0.72
Minerals 2024, 14, 957 9 of 21 
 

 

 
Figure 3. (a) Fry points of MVT Pb-Zn deposits and various orientations of faults in western Semnan. 
(b) Rose diagram of faults in the study area. 

MVT Pb-Zn mineralization occurs within cretaceous dolomite and limestone. For a 
better understanding of the relationship between these rock units and MVT mineraliza-
tion, a distance distribution analysis was conducted. The results indicate a strong positive 
spatial association (C_max value of 0.72) between cretaceous dolomite and limestone with 
MVT Pb-Zn occurrences (Table 2 and Figure 6). Therefore, it can be inferred that these 
rock units play a significant role as the lithological control for MVT Pb-Zn mineralization 
in western Semnan. 

Figure 3. (a) Fry points of MVT Pb-Zn deposits and various orientations of faults in western Semnan.
(b) Rose diagram of faults in the study area.



Minerals 2024, 14, 957 9 of 20Minerals 2024, 14, 957 10 of 21 
 

 

 
Figure 4. Distance maps of (a) N-S, (b) NE-SW, (c) E-W and (d) NW-SE main trending faults in the 
study area. 
Figure 4. Distance maps of (a) N-S, (b) NE-SW, (c) E-W and (d) NW-SE main trending faults in the
study area.



Minerals 2024, 14, 957 10 of 20Minerals 2024, 14, 957 11 of 21 
 

 

 
Figure 5. Plots showing distances from every location and from deposit locations to (a) EW, (b) NS, 
(c) NE–SW, and (d) NW–SE striking faults. 

 
Figure 6. (a) Distance map of Permian–Cretaceous carbonate rocks. (b) Graphs illustrating the dis-
tances between each location and the deposit sites to Cretaceous dolomites and limestone. 

  

Figure 5. Plots showing distances from every location and from deposit locations to (a) EW, (b) NS,
(c) NE–SW, and (d) NW–SE striking faults.

Minerals 2024, 14, 957 11 of 21 
 

 

 
Figure 5. Plots showing distances from every location and from deposit locations to (a) EW, (b) NS, 
(c) NE–SW, and (d) NW–SE striking faults. 

 
Figure 6. (a) Distance map of Permian–Cretaceous carbonate rocks. (b) Graphs illustrating the dis-
tances between each location and the deposit sites to Cretaceous dolomites and limestone. 

  

Figure 6. (a) Distance map of Permian–Cretaceous carbonate rocks. (b) Graphs illustrating the
distances between each location and the deposit sites to Cretaceous dolomites and limestone.



Minerals 2024, 14, 957 11 of 20

4.1. Conceptual Modeling of Geologic Controls on MVT Pb-Zn Mineralization

According to the spatial association analysis, the individual sets of geological features
in terms of their relative importance as controls on mineral deposit occurrence can be
ranked. Based on the foregoing explanation about MVT Pb-Zn mineralization in western
Semnan and spatial analysis results in the relationship between the MVT Pb-Zn occurrences
and geological features, we can imagine a conceptual model and identify spatial criteria in
MVT mineralization in the study area. Therefore, the prospectivity for MVT Pb-Zn deposits
in the district is defined by the following geological and spatial recognition criteria:

• The presence of Permian–Cretaceous dolomite and limestone geological units as
chemical and also physical traps.

• The presence of relative regular structure (NE–SW) faults/fractures and the confluence
of the fault families for fluid migration from source to traps.

• The presence of fractures to provide a suitable path for the flow of fluids from the
sedimentary basin.

Additionally, in the formation of MVT deposits, the presence of a sedimentary basin
as the primary condition for starting the desired mineralization and also the presence of
rocks rich in metals (such as shales) that are leached by saline fluids is required. This
conceptual model of the district-scale mechanism of geological control on MVT Pb-Zn
mineralization in the study area can be tested further and mapped through predictive
modeling of mineral prospectivity.

4.2. MVT Pb-Zn Mineral Prospectivity Mapping (MPM)
4.2.1. Geochemical Signatures

For mapping MVT Pb-Zn mineralization in western Semnan, we used the identified
spatial controlling factors combined with the study area’s geochemical signatures.

In this research after required preprocessing, we conducted a multivariate factor anal-
ysis on 28 elements to identify the key influencing and controlling components related to
the desired mineralization. Subsequently, Pb, Zn, and Ba were identified as the controlling
components in this study. Then fuzzified geochemical maps of Pb, Zn, and Ba were pre-
pared for suitable representation of geochemical signatures [58–67]. Thus, we prepared the
following evidence layers for MPM in the study area for desired mineralization; we used
logistic functions to fuzzify raster layers (Table 3).

• Fuzzified map of the proximity to the NE–SW trending fault (Figure 7a)
• Fuzzified map of the proximity to Permian–Cretaceous dolomite and limestone geo-

logical unit (Figure 7b)
• Fuzzified map of the geochemical information layer of Ba (Figure 8a)
• Fuzzified map of the geochemical information layer of Pb (Figure 8b)
• Fuzzified map of the geochemical information layer of Zn (Figure 8c)

Table 3. Fuzzification functions are applied to generate the continuously-weighted predictor layers.

Predictor Membership Function

Proximity to NE–SW trending faults Small
proximity to Permian–Cretaceous dolomite and

limestone geological unit Small

Pb distribution layer MS Large
Zn distribution layer MS Large
Ba distribution layer MS Large
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4.2.2. Model Training

The suitable RF tuning hyperparameter and the model performance metrics in this
study are shown in Tables 4 and 5, respectively. Model training was based on the labeling
procedure demonstrated in Figure 9.Through subsequent training and predicting via the
designed model, we created a prediction map of MVT Pb-Zn mineralization in western
Semnan, as shown in Figure 10. This prediction map introduced all of the known deposits
in only 15% of the study area.



Minerals 2024, 14, 957 14 of 20

Table 4. Hyperparameters for regressor RF.

Hyperparameter Value

Number of Estimators 200
Random State 0

Table 5. Performance metrics for regressor RF implementation.

Performance Metric Value

Mean Absolute Error 0.06
Root Mean Squared Error 0.14

R-squared (R2) Score 0.82
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5. Discussion

For over four decades, geoscientists have worked to comprehend the underlying
controlling factors in the varied distribution of different types of mineral deposits to model
mineral prospectivity and exploration targeting [6,12,20,68–80]. The spatial distribution
of mineral deposits is not random and is influenced by specific geological processes and
features. Analyzing the spatial patterns of known occurrences can unveil which geolog-
ical factors probably controlled their formation. Furthermore, studying the associations
between these deposits and specific geological features helps us discern the relative im-
portance of each feature as a control on mineral occurrence. Ultimately, this knowledge
informs the creation of predictive maps for assessing the prospectivity of similar mineral
deposits at specific geographical scales.

Depending on various geological conditions and, consequently, mineralization pro-
cesses, mineral deposits may be distributed in different patterns. Using mineral occurrence
distribution recognition and then identifying spatial relationships between geological fea-
tures and mineral occurrences could highlight controlling features on deposit formation.
Controls on ore deposition could assist exploration geologists with reliable exploration
targeting criteria. In this study, the point-based spatial distribution method (e.g., Fry
analysis) and the lineament-based spatial distribution method (e.g., distance distribution
analysis) were implemented to assess the spatial distribution pattern and controlling factors
in MVT Pb-Zn mineralization in western Semnan, Iran. Each approach for analyzing the
spatial distribution of mineral deposits focuses on specific aspects. However, relying solely
on individual methods may not provide adequate insights into the controlling factors
of mineralization. To better understand these controls, integration of multiple methods
is necessary.
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In this study, the spatial analysis revealed that the MVT Pb-Zn mineral deposition pat-
tern follows the NE–SW trend. As depicted in Figure 3, the distribution of Fry points aligns
parallel to fault traces, and the main trend of units exhibits a dominant northeast-southwest
trend. The spatial analysis of Pb-Zn MVT deposits in relation to fault orientations reveals
significant insights into the geological controls on mineralization. The distance distribution
analysis demonstrated a significant positive correlation between NE–SW trending faults
and the occurrence trend of MVT Pb-Zn deposits in the study area. While NW–SE and E–W
trending faults also exhibit significant C_max values, the NE–SW trending faults stand out
with the highest contrast value of 0.49. This suggests that NE–SW faults play a prominent
role in shaping the geological framework in western Semnan. In addition, the Fry plot
analysis further supports the NE–SW trend as the principal direction of mineralization,
reinforcing the significance of these trending faults. Therefore, objective data (C_max
values) and visual evidence (Fry plot) converge to highlight NE–SW trending faults as
the dominant structural control through which ore fluids are probably channeled. This
finding aligns with previous investigations and field observations [8,13]. Furthermore, the
cumulative percentage graphs (Figure 5) indicate that approximately 70% of the known
deposits are located within one kilometer of E–W trending faults. This suggests a strong
structural control exerted by these faults on the localization of mineralization. Furthermore,
the distance-distribution analysis for NW–SE trending faults shows that around 90% of the
known deposits occur within 2.5 km of these faults. This pattern highlights the regional
influence of NW–SE trending faults on the distribution of Pb-Zn deposits. In contrast, the
NE–SW trending faults exhibit a more localized control, while 90% of the known deposits
are situated within one kilometer of these faults. These findings suggest that NE–SW trend-
ing faults likely act as ore-controlling structures at the deposit scale, while NW–SE and E–W
trending faults play a significant role in controlling mineralization at the regional scale.
The interplay between these fault orientations and their respective distances to mineral
deposits underscores the complexity of structural controls in the study area. Overall, the
analysis provides a comprehensive understanding of the spatial relationship between fault
orientations and Pb-Zn mineralization, which is crucial for guiding future exploration
efforts in the region.

Moreover, distance distribution analysis revealed that Permian–Cretaceous dolomites
and limestones, which are hosted for MVT mineralization, are lithological controls in MVT
Pb-Zn mineralization in western Semnan. The results in Figure 6 demonstrated that about
95% of the known deposits occurred within 1.5 km of Permian–Cretaceous dolomite and
limestone units, highlighting these units’ significant role in trapping the enriched fluids.
MVT deposits are indeed associated with carbonate rocks. Changes in vertical and lateral
permeability within carbonate platform sequences play a crucial role in mineralization [81].
The mineralization process is influenced by factors controlling deposit fluid formation,
which encompasses transitional facies such as shale to carbonate, lime to dolomite, and
sandstone to carbonate [11,82].

6. Conclusions

The Fry analysis technique was used to investigate the spatial distribution pattern of
MVT Pb-Zn deposits in western Semnan, Iran. Based on the Fry analysis, we concluded
that the distribution of mineral deposits in western Semnan is not random but follows
an NE–SW trend, parallel to the main unit trend and parallel to the main fracture pattern
trend. The results of distance distribution analysis showed that the NE–SW, NW–SE, and
E–W striking faults are important structural controls for the MVT Pb-Zn mineralization in
western Semnan. The NE–SW striking faults with the highest C_max value are the most
important structural controls in the prospect scale. While the NW–SE and E–W trending
faults act as critical controls on the regional scale. The Anzab and Bashm faults play a
pivotal role in the mineralization of some MVT deposits in the study area. These NE–SW
trending compressional faults intersect NW–SE trending tensional faults that influence
the deposition of sulfides. In addition, Permian–Cretaceous dolomites and limestone in



Minerals 2024, 14, 957 17 of 20

the study area were introduced as important lithological factors influencing the type of
mineralization sought. Based on the C_max values, lithological controls were found to
play a more crucial role in the development of MVT mineralization compared to structural
factors. Faults/fractures have provided active pathways as well as physical traps for Pb-Zn-
bearing fluids responsible for MVT mineralization in the district and Permian–Cretaceous
carbonate host rocks are suitable chemical and physical traps for ore-bearing fluid focus-
ing. It appears that ore-bearing fluids were likely directed through fault corridors and
subsequently trapped within lithological controls, circulating further through permeable
pathways in brittle dolostone formations. These processes facilitated the movement of
ore-forming fluids and subsequent supergene and oxidation processes. Therefore, future
exploration efforts should concentrate on the Permian–Cretaceous dolostone formations.

The spatial analysis techniques used in this study accurately depicted the spatial
pattern of mineralization and the structural-lithological controls on mineralization. Subse-
quently, a data-driven procedure that combined the structural-lithological controls with the
geochemical signatures of the sedimentary basins in the study area provided an excellent
predictive map. This map highlighted areas of high potential, covering all 16 known de-
posits (100%) in only 15% of the study area. This excellent prediction rate of the proposed
approach emphasizes the correct identification of (1) the spatial pattern of mineralization,
(2) the correlation between occurrences and geological features, (3) the mineral system
of the type sought, (4) the conceptual modeling of the mineralization, (5) the decision of
labeling procedure, (6) the choice of data-driven MPM method, and (7) the hyperparameter
tuning of the predictive model. Accordingly, an intelligent combination of spatial control-
ling factors with geochemical signatures can map the mineralization potential of the desired
type of ore deposits. The random forest algorithm can robustly highlight high-potential
zones of MVT Pb-Zn mineralization in analogous metallogenic provinces.

Author Contributions: Conceptualization, S.Q.; methodology, S.Q.; software, S.Q.; validation, S.Q.,
A.M., A.B.P.; formal analysis, S.Q.; investigation, S.Q.; resources, A.M.; data curation, S.Q., A.M.;
writing—original draft preparation, S.Q.; writing—review and editing, S.Q., A.M., A.B.P., M.Y.;
visualization, S.Q.; supervision, A.M.; project administration, A.M. All authors have read and agreed
to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data used in this study are confidential.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Sangster, D.F. Mississippi Valley-type and sedex lead-zinc deposits: A comparative examination. Inst. Min. Metall. Trans. 1990, 99,

B21–B42.
2. Goodfellow, W.D.; Lydon, J.W.; Turner, R.J.W. Geology and genesis of stratiform sediment-hosted (SEDEX) zinc-lead-silver

sulphide deposits. Geol. Assoc. Can. Spec. Paper. 1993, 40, 201–251.
3. Leach, D.L.; Bradley, D.; Lewchuk, M.T.; Symons, D.T.A.; de Marsily, G.; Brannon, J. Mississippi Valley-type lead-zinc deposits

through geological time: Implications from recent age-dating research. Miner. Depos. 2001, 36, 711–740. [CrossRef]
4. Leach, D.L.; Sangster, D.F.; Kelley, K.D.; Large, R.R.; Garven, G.; Allen, C.R.; Gutzmer, J.; Walters, S. Sediment-hosted lead-zinc

deposits: A global perspective. Econ. Geol. 2005, 100, 561–608. [CrossRef]
5. Goodfellow, W.D.; Lydon, J.W. Sedimentary-exhalative (SEDEX) deposits. In Mineral Deposits of Canada: A Synthesis of Major

Deposit Types, District Metallogeny, the Evolution of Geological Provinces and Exploration Methods ; Goodfellow, W.D., Ed.; Geological
Association of Canada, Mineral Deposits Division: New Québec, QC, Canada, Special Publication 5; 2007; pp. 163–183. Available
online: https://www.mddgac.org/ (accessed on 1 September 2024).

6. Leach, D.; Bradley, D.; Huston, D.; Pisarevsky, S.; Taylor, R.; Gardoll, S. Sediment-Hosted Lead-Zinc Deposits in Earth History.
Econ. Geol. 2010, 105, 593–625. [CrossRef]

7. Wilkinson, J.J. Sediment-Hosted Zinc-Lead Mineralization: Processes and Perspectives. In Treatise on Geochemistry: Second Edition;
Elsevier: Amsterdam, The Netherlands, 2014; Chapter 13; pp. 219–249. [CrossRef]

8. Rajabi, A. Metallogeny and Geology of Zinc-Lead Deposits with Sedimentary Host Rocks in Iran; University of Tehran: Tehran, Iran, 2021.
9. Symons, D.T.; Arne, D. Paleomagnetic constraints on Zn–Pb ore genesis of the Pillara Mine, Lennard Shelf, Western Australia.

Miner. Depos. 2005, 39, 944–959. [CrossRef]

https://doi.org/10.1007/s001260100208
https://doi.org/10.5382/AV100.18
https://www.mddgac.org/
https://doi.org/10.2113/gsecongeo.105.3.593
https://doi.org/10.1016/B978-0-08-095975-7.01109-8
https://doi.org/10.1007/s00126-004-0446-8


Minerals 2024, 14, 957 18 of 20

10. Paradis, S.; Hannigan, P.; Dewing, K. Mississippi Valley-type lead-zinc deposits. Geol. Assoc. Can. Miner. Depos. Div. Spec. Publ.
2007, 5, 185–203.

11. Leach, D.L.; Taylor, R.D. Mississippi Valley-Type Lead-Zinc Deposit Model. In U.S. Geological Survey Open-File Report 2009-1213;
USGS: Reston, VA, USA, 2009.

12. Bradley, D.; Leach, D. Tectonic controls of Mississippi Valley-type lead–zinc mineralization in orogenic forelands. Miner. Deposita
2003, 38, 652–667. [CrossRef]

13. Bazargani-Guilani, K.; Nekouvaght Tak, M.A.; Faramarzi, M. Pb-Zn deposits in Cretaceous carbonate host rocks, northeast
Shahmirzad, central Alborz, Iran. Aust. J. Earth Sci. 2011, 58, 197–307. [CrossRef]

14. Rajabi, A.; Rastad, E.; Canet, C. Metallogeny of Cretaceous carbonate-hosted Zn–Pb deposits of Iran: Geotectonic setting and data
integration for future mineral exploration. Int. Geol. Rev. 2012, 54, 1649–1672. [CrossRef]

15. Rajabi, A.; Rastad, E.; Canet, C. Metallogeny of Permian–Triassic carbonate-hosted Zn–Pb and F deposits of Iran: A review for
future mineral exploration. Aust. J. Earth Sci. 2013, 60, 197–216. [CrossRef]

16. He, Z.; Gao, J.; Li, S.; He, S. Mineralization of MVT Pb-Zn Deposits in the Process of Hydrocarbon Accumulation and Destruction
in the Strong Structural Deformation Area of Eastern Sichuan, South China. Minerals 2022, 12, 1281. [CrossRef]

17. Wang, G.; Lei, Q.; Huang, Z.; Liu, G.; Fu, Y.; Li, N.; Liu, J. Genetic Relationship between Mississippi Valley-Type Pb–Zn
Mineralization and Hydrocarbon Accumulation in the Wusihe Deposits, Southwestern Margin of the Sichuan Basin, China.
Minerals 2022, 12, 1447. [CrossRef]

18. Guan, G.; Li, S.; Li, R. Mineralization Process of MVT Zn-Pb Deposit Promoted by the Adsorbed Hydrocarbon: A Case Study
from Mayuan Deposit on the North Margin of Sichuan Basin. Minerals 2023, 13, 72. [CrossRef]

19. Laranjeira, V.; Ribeiro, J.; Moreira, N.; Nogueira, P.; Flores, D. Geochemistry of Precambrian black shales from Ossa-Morena Zone
(Portugal): Depositional environment and possible source of metals. J. Iber. Geol. 2023, 49, 1–19. [CrossRef]

20. Parsa, M.; Maghsoudi, A. Controls on Mississippi Valley-Type Zn-Pb mineralization in Behabad district, Central Iran: Constraints
from spatial and numerical analyses. J. Afr. Earth Sci. 2018, 140, 189–198. [CrossRef]

21. Gibson, G.M.; Edwards, S. Basin inversion and structural architecture as constraints on fluid flow and Pb–Zn mineralization in
the Paleo–Mesoproterozoic sedimentary sequences of northern Australia. Solid Earth 2020, 11, 1205–1226. [CrossRef]

22. Bowness, N.P.; Cawood, A.J.; Ferrill, D.A.; Smart, K.J.; Bellow, H.B. Mineralogy controls fracture containment in mechanically
layered carbonates. Geol. Mag. 2022, 159, 1855–1873. [CrossRef]

23. Chi, G.; Xue, C. Similarities and Differences between the Sandstone-Hosted Jinding Zn-Pb Deposit and MVT Deposits. AGU
Spring Meet. Abstr. 2009, MA73C-07.

24. Ma, R. Study on geological features and exploration methods of MVT Pb-Zn deposits. IOP Conf. Ser. Earth Environ. Sci. 2018,
108, 032010. [CrossRef]

25. Liu, Y.; Yang, Z.; Yue, L.; Yu, Y.; Ma, W.; Tang, B. Geological Characteristics and Genesis of the Jiamoshan MVT Pb–Zn Deposit,
Sanjiang belt, Tibetan Plateau. Acta Geol. Sin. Engl. Ed. 2020, 94. [CrossRef]

26. Garven, G. The role of regional fluid flow in the genesis of the Pine Point deposit, Western Canada Sedimentary Basin. Econ. Geol.
1985, 80, 307–324. [CrossRef]

27. Ge, S.; Garven, G. Hydromechanical modeling of tectonically-driven groundwater flow with application to the Arkoma foreland
basin. J. Geophys. Res. 1992, 97, 9119–9144. [CrossRef]

28. Appold, M.S.; Garven, G. The hydrology of ore formation in the Southeast Missouri District: Numerical models of topography-
driven fluid flow during the Ouachita Orogeny. Econ. Geol. 1999, 94, 913–936. [CrossRef]

29. Bazargani-Guilani, K.; Faramarzi, M.; Tak, M. Multistage dolomitization in the Cretaceous carbonates of the east Shahmirzad
area, north Semnan, central Alborz, Iran. Carbonates Evaporites 2010, 25, 177–191. [CrossRef]

30. Bazargani-Guilani, K.; Rabiei, M.; Mehrabi, B. Effects of host rock mineralogical composition and sedimentary facies on
development of geochemical halos in Shahmirzad Pb-Zn deposits, central Alborz, Iran. J. Geochem. Explor. 2013, 124, 155–165.
[CrossRef]

31. Fry, N. Random point distributions and strain measurement in rocks. Tectonophysics 1979, 60, 89–105. [CrossRef]
32. Vearncombe, J.; Vearncombe, S. The spatial distribution of mineralization; applications of Fry analysis. Econ. Geol. 1999, 94,

475–486. [CrossRef]
33. Berman, M. Distance distributions associated with Poisson processes of geometric figures. J. Appl. Probab. 1977, 14, 195–199.

[CrossRef]
34. Carranza, E.J.M. Controls on mineral deposit occurrence inferred from analysis of their spatial pattern and spatial association

with geological features. Ore Geol. Rev. 2009, 35, 383–400. [CrossRef]
35. Assereto, R. The Paleozoic formations in central Elburz (Iran) (preliminary note). Riv. Ital. Paleontol. Stratigr. 1963, 69, 503–543.
36. Stöcklin, J.; Ruttner, A.; Nabavi, M. New Data on the Lower Paleozoic and Pre-Cambrian of North Iran; Geological Survey of Iran:

Tehran, Iran, 1964; Volume 1.
37. Geyer, G.; Bayet-Goll, A.; Wilmsen, M.; Mahboubi, A.; Moussavi-Harami, R. Lithostratigraphic revision of the middle Cambrian

(Series 3) and upper Cambrian (Furongian) in northern and central Iran. Newsl. Stratigr. 2014, 47, 21–59. [CrossRef]
38. Berberian, M. The southern Caspian: A compressional depression floored by a trapped modified oceanic crust. Can. J. Earth Sci.

1983, 20, 163–183. [CrossRef]

https://doi.org/10.1007/s00126-003-0355-2
https://doi.org/10.1080/08120099.2011.556664
https://doi.org/10.1080/00206814.2012.659110
https://doi.org/10.1080/08120099.2012.754792
https://doi.org/10.3390/min12101281
https://doi.org/10.3390/min12111447
https://doi.org/10.3390/min13010072
https://doi.org/10.1007/s41513-022-00202-6
https://doi.org/10.1016/j.jafrearsci.2018.01.012
https://doi.org/10.5194/se-11-1205-2020
https://doi.org/10.1017/S0016756822000334
https://doi.org/10.1088/1755-1315/108/3/032010
https://doi.org/10.1111/1755-6724.14562
https://doi.org/10.2113/gsecongeo.80.2.307
https://doi.org/10.1029/92JB00677
https://doi.org/10.2113/gsecongeo.94.6.913
https://doi.org/10.1007/s13146-010-0022-5
https://doi.org/10.1016/j.gexplo.2012.09.006
https://doi.org/10.1016/0040-1951(79)90135-5
https://doi.org/10.2113/gsecongeo.94.4.475
https://doi.org/10.2307/3213273
https://doi.org/10.1016/j.oregeorev.2009.01.001
https://doi.org/10.1127/0078-0421/2014/0039
https://doi.org/10.1139/e83-015


Minerals 2024, 14, 957 19 of 20

39. Alavi, M. Sedimentary and structural characteristics of the Paleo-Tethys remnants in northeastern Iran. Geol. Soc. Am. Bull. 1991,
103, 983–992. [CrossRef]

40. Alavi, M. Tectono-stratigraphic synthesis and structural style of the Alborz Mountain system in northern Iran. J. Geodyn. 1996, 21,
1–33. [CrossRef]

41. Axen, G.J.; Lam, P.S.; Grove, M.; Stockli, D.F.; Hassanzadeh, J. Exhumation of the west-central Alborz Mountains, Iran, Caspian
subsidence, and collision-related tectonics. Geology 2001, 29, 559–562. [CrossRef]

42. Guest, B.; Stockli, D.F.; Grove, M.; Axen, G.J.; Lam, P.S.; Hassanzadeh, J. Thermal histories from the central Alborz Mountains,
northern Iran: Implications for the spatial and temporal distribution of deformation in north Iran. Geol. Soc. Am. Bull. 2006, 118,
1507–1521. [CrossRef]

43. David, L.; Taylor, R.D.; Fey, D.L.; Diehl, S.F.; Saltus, R.W. A Deposit Model for Mississippi Valley-Type Lead-Zinc Ores. Mineral Deposit
Models for Resource Assessment; Scientific Investigations Report 2010–5070–K; USGS: Reston, VA, USA, 2010.

44. Bigdeli, A.; Maghsoudi, A.; Ghezelbash, R. Recognizing geochemical anomalies associated with mineral resources using
singularity analysis and random forest models in the Torud-Chahshirin Belt, Northeast Iran. Minerals 2023, 13, 1399. [CrossRef]

45. Tabatabaei, S.H.; Rodsari, P.R.; Mokhtari, A.R. Predicting Potential Mineralization Using Surface Geochemical Data and Multiple
Linear Regression Model in the Kuh Panj Porphyry Cu Mineralization (Iran). Arab. J. Sci. Eng. 2015, 40, 163–170. [CrossRef]

46. Chen, Y.; Wu, W. Application of one-class support vector machine to quickly identify multivariate anomalies from geochemical
exploration data. Geochem. Explor. Environ. Anal. 2017, 17, 231–238. [CrossRef]

47. Grunsky, E.; Caritat, P.D. State-of-the-Art Analysis of Geochemical Data for Mineral Exploration. Geochem. Explor. Environ. Anal.
2019, 20, geochem2019-031. [CrossRef]

48. Li, C.; Liu, B.; Guo, K.; Li, B.; Kong, Y. Regional Geochemical Anomaly Identification Based on Multiple-Point Geostatistical
Simulation and Local Singularity Analysis—A Case Study in Mila Mountain Region, Southern Tibet. Minerals 2021, 11, 1037.
[CrossRef]

49. Ghasemi, R.; Tokhmechi, B.; Borg, G. Evaluation of effective factors in window optimization of fry analysis to identify mineraliza-
tion pattern: Case study of Bavanat region, Iran. J. Min. Environ. 2017, 9, 195–208. [CrossRef]

50. Nguemhe Fils, S.C.; Mimba, M.; Nyeck, B.; Nforba, M.; Boniface, K.; Nouck, P.; Hell, J. GIS-Based Spatial Analysis of Regional-
Scale Structural Controls on Gold Mineralization Along the Bétaré-Oya Shear Zone, Eastern Cameroon. Nat. Resour. Res. 2020, 29,
3457–3477. [CrossRef]

51. Ghasemzadeh, S.; Maghsoudi, A.; Yousefi, M.; Mihalasky, M.J. Recognition and incorporation of mineralization-efficient fault
systems to produce a strengthened anisotropic geochemical singularity. J. Geochem. Explor. 2022, 235, 106967. [CrossRef]

52. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
53. Carranza, E.J.M.; Laborte, A. Data-driven predictive mapping of gold prospectivity, Baguio district, Philippines: Application of

Random Forests algorithm. Ore Geol. Rev. 2014, 71, 777–787. [CrossRef]
54. Xiang, J.; Xiao, K.; Carranza, E.J.M.; Jianping, C.; Li, S. 3D Mineral Prospectivity Mapping with Random Forests: A Case Study of

Tongling, Anhui, China. Nat. Resour. Res. 2019, 29, 395–414. [CrossRef]
55. Kuhn, S.D. Machine learning for mineral exploration: Prediction and quantified uncertainty at multiple exploration stages. Ph.D.

Thesis, University of Tasmania, Hobart, Australia, 2021. [CrossRef]
56. Zuo, R.; Carranza, E.J.M. Machine Learning-Based Mapping for Mineral Exploration. Math. Geosci. 2023, 55, 891–895. [CrossRef]
57. Breiman, L. Classification and Regression Trees; CRC Press: Boca Raton, FL, USA, 1984.
58. Carranza, E.J.M.; Hale, M. Where are porphyry copper deposits spatially localized? A case study in Benguet province, Philippines.

Nat. Resour. Res. 2002, 11, 45–59. [CrossRef]
59. Bishop, C.M. Pattern Recognition and Machine Learning; Springer Science Business Media: New York, NY, USA, 2006.
60. Theodoridis, S.; Koutroumbas, K. Clustering: Basic concepts. Pattern Recogn. 2006, 483–516.
61. Carranza, E.J.M. Geochemical Anomaly and Mineral Prospectivity Mapping in GIS. In Handbook of Exploration and Environmental

Geochemistry; Elsevier: Amsterdam, The Netherlands, 2008; Volume 11.
62. Yousefi, M.; Kamkar-Rouhani, A.; Carranza, E.J.M. Application of staged factor analysis and logistic function to create a fuzzy

stream sediment geochemical evidence layer for mineral prospectivity mapping. Geochem. Explor. Environ. Anal. 2014, 14, 45–58.
[CrossRef]

63. Yousefi, M.; Carranza, E.J.M. Prediction-area (P-A) plot and C-A fractal analysis to classify and evaluate evidential maps for
mineral prospectivity modeling. Comput. Geosci. 2015, 79, 69–81. [CrossRef]

64. Mutele, L.; Billay, A.; Hunt, J.P. Knowledge-driven prospectivity mapping for granite-related polymetallic Sn–F–(REE) mineraliza-
tion. Bushveld Igneous Complex, South Africa. Nat. Resour. Res. 2017. [CrossRef]

65. Nykänen, V.; Niiranen, T.; Molnár, F.; Lahti, I.; Korhonen, K.; Cook, N.; Skyttä, P. Optimizing a Knowledge-driven Prospectivity
Model for Gold Deposits Within Peräpohja Belt, Northern Finland. Nat. Resour. Res. 2017, 26, 571–584. [CrossRef]

66. Bigdeli, A.; Maghsoudi, A.; Ghezelbash, R. Application of self-organizing map (SOM) and K-means clustering algorithms for
portraying geochemical anomaly patterns in Moalleman district, NE Iran. J. Geochem. Explor. 2022, 233, 106923. [CrossRef]

67. Ghasemzadeh, S.; Maghsoudi, A.; Yousefi, M.; Mihalasky, M.J. Information value-based geochemical anomaly modeling: A
statistical index to generate enhanced geochemical signatures for mineral exploration targeting. Appl. Geochem. 2022, 136, 105177.
[CrossRef]

68. Meyer, C. Ore-forming processes in geologic history. Econ. Geol. 1981, 75, 6–41. [CrossRef]

https://doi.org/10.1130/0016-7606(1991)103%3C0983:SASCOT%3E2.3.CO;2
https://doi.org/10.1016/0264-3707(95)00009-7
https://doi.org/10.1130/0091-7613(2001)029%3C0559:EOTWCA%3E2.0.CO;2
https://doi.org/10.1130/B25819.1
https://doi.org/10.3390/min13111399
https://doi.org/10.1007/s13369-014-1482-z
https://doi.org/10.1144/geochem2016-024
https://doi.org/10.1144/geochem2019-031
https://doi.org/10.3390/min11101037
https://doi.org/10.22044/jme.2017.909
https://doi.org/10.1007/s11053-020-09695-3
https://doi.org/10.1016/j.gexplo.2022.106967
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1016/j.oregeorev.2014.08.010
https://doi.org/10.1007/s11053-019-09578-2
https://doi.org/10.25959/23250080.v1
https://doi.org/10.1007/s11004-023-10097-3
https://doi.org/10.1023/A:1014287720379
https://doi.org/10.1144/geochem2012-144
https://doi.org/10.1016/j.cageo.2015.03.007
https://doi.org/10.1007/s11053-017-9325-8
https://doi.org/10.1007/s11053-016-9321-4
https://doi.org/10.1016/j.gexplo.2021.106923
https://doi.org/10.1016/j.apgeochem.2021.105177
https://doi.org/10.5382/AV75.02


Minerals 2024, 14, 957 20 of 20

69. Meyer, C. Ore deposits as guides to geologic history of the earth. Annu. Rev. Earth Planet. Sci. 1988, 16, 147–171. [CrossRef]
70. Sawkins, F.J. Metal Deposits in Relation to Plate Tectonics; Springer: Berlin, Germany, 1984; Volume 17.
71. Veizer, J.; Laznicka, P.; Jansen, S.L. Mineralization through geologic time: Recycling perspective. Am. J. Sci. 1989, 289, 484–524.

[CrossRef]
72. Barley, M.E.; Groves, D.I. Supercontinent cycles and the distribution of metal deposits through time. Geology 1992, 20, 291–294.

[CrossRef]
73. Hutchinson, R.W. Mineral deposits and metallogeny: Indicators of Earth’s evolution. In Early Organic Evolution: Implications for

Mineral and Energy Resources; Schidlowski, M., Ed.; Springer: Berlin, Heidelberg, Germany, 1992; pp. 521–544.
74. Titley, S.R. Relationship of strata bound ores with tectonic cycles of the Phanerozoic and Proterozoic. Precambrian Res. 1993, 61,

295–322. [CrossRef]
75. Goldfarb, R.J.; Groves, D.I.; Gardoll, S. Rotund versus skinny orogens: Well-nourished or malnourished gold? Geology 2001, 29,

539–542. [CrossRef]
76. Groves, D.I.; Vielreicher, R.M.; Goldfarb, R.J.; Condie, K.C. Controls on the heterogeneous distribution of mineral deposits

through time. Geol. Soc. Lond. Spec. Publ. 2005, 248, 71–101. [CrossRef]
77. Holland, H.D. Sedimentary mineral deposits and the evolution of Earth’s near-surface environments. Econ. Geol. 2005, 100,

1489–1509. [CrossRef]
78. Bigdeli, A.; Maghsoudi, A.; Ghezelbash, R. A comparative study of the XGBoost ensemble learning and multilayer perceptron

in mineral prospectivity modeling: A case study of the Torud-Chahshirin belt, NE Iran. Earth Sci. Inform. 2024, 17, 483–499.
[CrossRef]

79. Yousefi, M.; Kreuzer, O. Towards an effective exploration information system–new concepts and ideas aimed at improving
mineral exploration targeting. Appl. Geochem. 2024, 106053. [CrossRef]

80. Yousefi, M.; Lindsay, M.D.; Kreuzer, O.P. Mitigating uncertainties in mineral exploration targeting: Majority voting and confidence
index approaches in the context of an Exploration Information System (EIS). Ore Geol. Rev. 2024, 165, 105930. [CrossRef]

81. Al-Khdheeawi, E.A.; Allawi, R.H.; Al-Rubaye, W.I.; Iglauer, S. A New Approach to Predicting Vertical Permeability for Carbonate
Rocks in the Southern Mesopotamian Basin. Minerals 2023, 13, 1519. [CrossRef]

82. Paradis, S.; Hannigan, P.; Dewing, K. Mineral Deposits of Canada: Mississippi Valley-type Lead-Zinc Deposits (MVT); Geological
Survey of Canada: Ottawa, ON, Canada, 2008.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1146/annurev.ea.16.050188.001051
https://doi.org/10.2475/ajs.289.4.484
https://doi.org/10.1130/0091-7613(1992)020%3C0291:SCATDO%3E2.3.CO;2
https://doi.org/10.1016/0301-9268(93)90118-L
https://doi.org/10.1130/0091-7613(2001)029%3C0539:RVSOWN%3E2.0.CO;2
https://doi.org/10.1144/GSL.SP.2005.248.01.04
https://doi.org/10.2113/gsecongeo.100.8.1489
https://doi.org/10.1007/s12145-023-01184-4
https://doi.org/10.1016/j.apgeochem.2024.106053
https://doi.org/10.1016/j.oregeorev.2024.105930
https://doi.org/10.3390/min13121519

	Introduction 
	Geological Framework of the Study Area 
	Material and Methods 
	Data Source 
	Fry Analysis 
	Distance Distribution Analysis 
	Random Forest (RF) Algorithm-Based Modeling 
	Hyperparameters for RF Analysis 
	Performance Metrics for Regressor RF 


	Analysis, Results, and Interpretation 
	Conceptual Modeling of Geologic Controls on MVT Pb-Zn Mineralization 
	MVT Pb-Zn Mineral Prospectivity Mapping (MPM) 
	Geochemical Signatures 
	Model Training 


	Discussion 
	Conclusions 
	References

